73024

John Ashcroft Governor

John R. Bagby, Ph.D. Director

P.O. Box 570, Jefferson City, MO 65102 • 314-751-6400 • FAX 314-751-6010

North End Site nic 0985768134

May 19, 1991

5-19-91

RECEIVEL

MAY 22 1992

SPFD BRANCH

Mr. Robert L. Morby Chief, Superfund Branch Waste Management Division U. S. Environmental Protection Agency 726 Minnesota Avenue Kansas City, Kansas 66101

Dear Mr. Morby:

Under the Cooperative Agreement between the U.S. Environmental Protection Agency (EPA) and the Missouri Department of Health (MDOH), EPA has directed that MDOH prepare a residual risk assessment for groundwater contamination found at the North End Site, Kansas City, Missouri. Enclosed please find the draft residual Risk Assessment for the North End Site.

MDOH appreciates the opportunity to provide you with this document. If you have any questions or comments regarding this assessment, please feel free to contact Ms. Cherri Baysinger-Daniel or Mr. Chuck Arnold at (314) 751-6102.

Sineerely

Daryl W. Roberts

Chief

Bureau of Environmental Epidemiology

DWR:CCA

Enclosure

cc: David Crawford, U. S. Environmental Protection Agency

SUPERFUND RECORDS

•			

DRAFT RESIDUAL RISK ASSESSMENT FOR GROUNDWATER CONTAMINATION NORTH END SITE

1.0 INTRODUCTION

1.1 Objective

The North End Site was used for the disposal for lead-contaminated wastes resulting from the production of steel. Remedial activities at the site included soil removal and installation of groundwater monitoring wells. The Missouri Department of Health (DOH) was tasked by the U. S. Environmental Protection Agency (EPA) to conduct a risk assessment to determine if remaining groundwater contamination warrants cleanup.

1.2 Site Background

The North End Site is located in an industrialized area of Kansas City, Missouri, within the Armco complex, an active steel manufacturing facility (Figure 1). From 1962 to 1980, the North End Site was used as a landfill for the disposal of lead-contaminated electric furnace baghouse dusts generated during steel production.

In complying with the Administrative Order of Consent (AOC), Armco Inc. conducted a removal of lead-contaminated soil at the North End Site. This included excavation, sorting and staging, testing, off-site disposal, and verification of the effectiveness of the removal action. Over 26,000 cubic yards of material were excavated and disposed of in permitted landfills. Lead concentrations in soil samples taken following completion of soil removal were less than the clean-up criterion of 238 mg/kg total lead. After confirmatory sampling and analysis was completed, the site was backfilled, graded, and seeded.

Pursuant to the AOC, Armco installed two deep and three shallow monitoring wells (in addition to ten existing wells) for further collection and analysis of groundwater. Sampling of all site wells was conducted in March and again in May, 1991. Lead and several volatile organic compounds (VOCs) were detected.

	Commercial		

 	 (Manus)

1.3 Scope of Risk Assessment

This risk assessment will evaluate the human health risks posed to a hypothetical future offsite resident drinking and showering with groundwater contaminated by lead and the volatile organic compounds detected at the North End Site.

2.0 IDENTIFICATION OF CHEMICALS OF POTENTIAL CONCERN

2.1 Site Geology

The North End Site is underlain by Quaternary Alluvium of the Blue River. Soil consistency ranges from moist to saturated interbedded clayey silt and silty clay with small amounts of fine sand in the upper soils to poorly sorted silty gravels and sand in the lower soils sitting above bedrock. A zone of reduced permeability consisting of stiff, silty clay lies between the two soil types. Groundwater investigation results indicate the unconsolidated aquifer is comprised of an upper and lower zone each having slightly different hydraulic conductivities. Sampling results (absence of VOCs in deep wells) suggest the alluvium acts as two separate aquifers, both discharging to the Blue River.

2.2 Data Collection

Prior to the removal action, ten shallow monitoring wells (screened between 16 to 25 feet below ground surface (bgs)) were located on the North End Site. Under the AOC, Armco installed five additional wells; two deep wells (screened between 58 to 64 feet bgs) and three shallow wells (screened between 8 to 13 feet bgs). Because of deep excavation for waste removal prior to the May sampling, one well was abandoned and sealed. A replacement well was installed in close proximity. Fifteen wells were sampled during March and May of 1991, and the results used in this risk assessment.

2.3 Data Evaluation

All groundwater samples were analyzed for total phenolics, nitrates, total and dissolved lead, priority pollutant VOCs, polychlorinated biphenyls, pH, specific conductance and alkalinity. Total lead was present in detectable levels in all groundwater samples in concentrations up to 400 ug/L (Appendix I). Dissolved lead was not detected in any groundwater samples. The following VOCs were detected at least once in at least one well during groundwater sampling: chlorethane, chloromethane, 1,2 dichlorobenzene, 1,1 dichloroethane, 1,2 dichloroethene, tetrachloroethene, 1,1 trichloroethane, trichloroethene, and vinyl chloride (Appendix I).

 da	 	 ******

Contaminants of concern were limited to total lead and the volatile organic compounds detected at least once during groundwater sampling (Table 1). Average contaminant concentrations for each well were calculated from the March and May sampling data. For contaminants of concern undetected during one sampling round, one-half the detection limit was used to calculate average contaminant concentrations. Contaminant concentrations for VOCs in wells from which a replicate sample had been taken are the arithmetic average of the initial and replicate sample results. Contaminant concentrations from all wells were combined to calculate the site mean, maximum, minimum, standard deviation, and 95% Upper Confidence Level (UCL) values (Table 1).

2.4 Uncertainties

During the second round of sampling, vinyl chloride was detected in only one sample; the compound identification was certain but the concentration was an estimated value (J-qualified, Appendix I). Chloromethane, 1,2 dichlorobenzene, and 1,2 dichloroethene were detected during the first round of sampling but not detected during the second round of sampling (Appendix 1). Because these compounds were included in the risk assessment, the true risk posed by the site may be overestimated.

3.0 EXPOSURE ASSESSMENT

3.1 Current Exposure Pathways

Land use in the vicinity of the North End Site is currently industrial. Contaminated soil was removed, precluding current or future exposure to contaminated soil. No drinking water wells are currently located on site, thus on-site exposure through ingestion of contaminated groundwater is not expected. Therefore, no current exposure pathways were evaluated.

3.2 Future Exposure Pathways

The industrialized nature of the area is not expected to change, but the possibility exists for a residential community to be established across the Blue River north of the site (see Figure 1). For the purposes of this risk assessment, EPA has directed DOH to assume future land use on adjacent property would be residential; i.e., land across the Blue River from the North End Site would be used as a trailer park and drinking water would be supplied by a community well. Exposure pathways for future residential land use were

_				

Table 1.

Summary Statistics for Contaminants of Concern in Groundwater at the North End Superfund Site, Kansas City, MO.

Contaminant	Mean Concentration (mg/L)	Maximum Value (mg/L)	Minimum Value (mg/L)	Standard Deviation	95% Upper Confidence Limit
Total Lead	0.063	0.229	0.0095	0.055	0.0918
Chloroethane	0.017	0.170	0.005	0.041	0.0390
Chloromethane	0.007	0.025	0.005	0.005	0.00972
1,2 Dichlorobenzene	0.004	0.013	0.0025	0.003	0.00521
1,1 Dichloroethane	0.065	0.610	0.0025	0.159	0.149
1,2 Dichloroethane	0.003	0.013	0.0025	0.003	0.00481
1,1 Dichloroethene	0.039	0.340	0.0025	0.086	0.0840
1,2 Dichloroethene	0.004	0.018	0.00225	0.004	0.00580
Tetrachloroethene	0.005	0.029	0.0025	0.007	0.00855
1,1,1 Trichloroethane	0.028	0.220	0.0025	0.057	0.0578
Trichloroethene	0.004	0.013	0.0025	0.003	0.00569
Vinyl Chloride	0.008	0.035	0.005	0.008	0.0119

ingestion of contaminated drinking water and inhalation of volatilized VOCs during showering.

The Blue River is generally considered to be a hydrologic barrier to groundwater movement. For the purposes of this risk assessment and to ensure protectiveness of human health, it is assumed that the community well would be large enough to pull water across the hydrologic divide formed by the Blue River. EPA estimates that the well would obtain 1% of its water supply from the North End Site, thus contaminant concentrations in the community well would be 1/100th of the average concentrations beneath the North End site (Table 2).

3.3 Reasonable Maximim Exposures (RMEs)

For the future land use scenario, two RMEs were developed by EPA using site specific assumptions. RME 1 was a 15-kilogram child, 0-6 years of age, living in the trailer park for 6 years, ingesting and showering with contaminated groundwater. RME 2 was a 70-kilogram adult living in the trailer park for thirty years ingesting contaminated groundwater and inhaling volatilized VOCs while showering.

3.4 Calculation of Air Concentrations

Contaminant concentrations in air (mg/m³) while showering (Table 3) were calculated from groundwater concentrations (mg/L) using the following formula:

Concentration in Air=(Concentration in Water)(Liters/shower)(VolatilizationFactor)
(Room Volume)

This formula was modified from ECAO (1991). In these calculations, the values 180 liters and 10 m³, respectively, were used as site-specific estimates of the number of liters per shower and the room volume. A value of 0.5 (0.0005 x 1000 L/m³) was used as the volatilization factor (EPA 1991c).

3.5 Estimation of Chemical Intakes

Intake rates for all contaminants were quantified using the pathway-specific equations (Tables 4 and 5) taken from EPA (1989) Risk Assessment Guidance for Superfund: Volume I (RAGS). Exposure variables used in the equations were chosen by EPA personnel so that the combination of all intake variables resulted in a RME for each contaminant within a pathway (Appendix II).

Table 2.

Calculated Concentrations
of Contaminants of Concern in a Hypothetical Future Drinking Water
Well, North End Superfund Site, Kansas City, MO.

Contaminant	95% Upper Confidence Limit (mg/L)	Assumed Percentage of Contaminated Water Entering the Community Well	Calculated Concentration in Community Well Water (mg/L)
Total Lead	9.18 x 10-2	1 x 10-2	9.18 x 10-4
Chloroethane	3.90 x 10-2	1 x 10-2	3.90 x 10-4
Chloromethane	9.72 x 10-3	1 x 10-2	9.72 x 10 ⁻⁵
1,2 Dichlorobenzene	5.21 x 10 ⁻³	1 x 10-2	5.21 x 10 ⁻⁵
1,1 Dichloroethane	1.49 x 10 ⁻¹	1 x 10-2	1.49 x 10-3
1,2 Dichloroethane	4.81×10^{-3}	1 x 10-2	4.81 x 10-5
1,1 Dichloroethene	8.40 x 10-2	1 x 10-2	8.40 x 10-4
1,2 Dichloroethene	5.80×10^{-3}	1 x 10-2	5.80 x 10-5
Tetrachloroethene	8.55 x 10-3	1 x 10-2	8.55 x 10-5
1,1,1 Trichloroethane	5.78 x 10-2	1 x 10-2	5.78 x 10-4
Trichloroethene	5.69 x 10-3	1 x 10-2	5.69 x 10-5
Vinyl Chloride	1.19 x 10-2	1 x 10-2	1.19 x 10-4

Table 3.

Calculated Concentrations of Volatile Compounds in Air While Showering North End Superfund Site, Kansas City, MO.

Contaminant	Size of Bathroom (m3)	Liters of Water Used Per Shower (L)	Contaminant Concentration in Groundwater (mg/L)	Volatility	Contaminant Concentration in Air (mg/m ³)
Chloroethane	10	180	0.00039	0.5	0.00351
Chloromethane	10	180	0.0000972	0.5	0.0008748
1,2 Dichlorobenzene	10	180	0.0000521	0.5	0.0004689
1,1 Dichloroethane	10	180	0.00149	0.5	0.01341
1,2 Dichloroethane	10	180	0.0000481	0.5	0.0004329
1,1 Dichloroethene	10	180	0.00084	0.5	0.00756
1,2 Dichloroethene	10	180	0.000058	0.5	0.000522
Tetrachloroethene	10	180	0.0000855	0.5	0.0007695
1,1,1 Trichloroethane	10	180	0.000578	0.5	0.005202
Trichloroethene	10	180	0.0000569	0.5	0.0005121
Vinyl Chloride	10	180	0.000116	0.5	0.001044

Table 4.

Intake Equations for Ingestion of Contaminated Groundwater North End Superfund Site, Kansas City, MO.*

Equation:

Chronic Daily Intake (mg/kg/day)=CW x IR x EF x ED / (BW x AT)

Where:

CW=Chemical Concentration in Groundwater (mg/L) IR=Ingestion Rate (L water/day) EF=Exposure Frequency (days/year) ED=Exposure Duration (years) BW=Body Weight (kg) AT=Averaging Time (days)

Variable values:

CS=site specific calculated value (Table 2)
IR=1 L/day - child
2 L/day - adult (EPA 1990)
EF=365 days/year (number of days in a year)
ED=6 years - child
30 years - adult
BW=15 kg (arithmetic mean of 50th percentile body weights of children aged
0-6 years)
70 kg - adult (EPA 1990)
AT=2190 days for child - noncarcinogenic effects (ED x 365 days/year)
10950 days for adult - noncarcinogenic effects (ED x 365 days/year)
25550 days for child and adult carcinogenic effects (70 years x 365 days/year)

^{*}Formula was obtained from EPA 1989

· · · · · · · · · · · · · · · · · · ·	

Table 5.

Inhalation of Volatized Compounds While Showering North End Superfund Site, Kansas City, MO.*

Equation:

Chronic Daily Intake (mg/kg/day)=CA x IR x ET x EF x ED / (BW x AT)

Where:

CA=Chemical Concentration in air (mg/m³) IR=Inhalation Rate (m³/hr) ET=Exposure Time (hours/day) EF=Exposure Frequency (days/year) ED=Exposure Duration (years) BW=Body Weight (kg) AT=Averaging Time (days)

Variable values:

CA=calculated chemical concentration (Table 3)
IR=0.83 m³/hour (EPA 1990)
ET=0.25 hour/day (site specific estimate)
EF=365 days/year (assumes one shower per day)
ED=6 years - child
30 years - adult
BW=15 kg (arithmetic mean of 50th percentile body weights of children aged
0-6 years)
70 kg - adult (EPA 1990)
AT=2190 days for child - noncarcinogenic effects (ED x 365 days/year)
10950 days for adult - noncarcinogenic effects (ED x 365 days/year)
25550 days for child and adult carcinogenic effects (70 years x 365 days/year)

^{*}Formula was obtained from EPA 1989

The Lead Biokinetic Uptake Model was used to estimate intake of lead from groundwater. The model was run using a groundwater concentration of 0.918 ug/L with default values for soil, air, food and paint.

4.0 TOXICITY ASSESSMENT

4.1 Noncarcinogenic Effects

Reference Doses (RfDs) and Reference Concentrations (RfCs) are the toxicity values used in assessing noncarcinogenic effects from oral and inhalation exposure, respectively. EPA's Integrated Risk Information System (IRIS) contains contaminant specific RfD and RfC values which have been verified by an intra-Agency work group. RfD and RfC values which have not been verified may be found in EPA Health Effects Assessment Summary Tables (HEAST, EPA 1991b). Available toxicity values and effects of concern associated with exposure to specific contaminants are summarized in Table 6.

Unit Risks were converted to RfCs using the formula taken from the preface to HEAST, 1991 Annual Volume (EPA 1991). The formula is as follows:

RfC = (Unit Risk) (Inhalation Rate) (Body Weight)

where Inhalation Rate = 0.83 m³/hour and Body Weight = 15 kg. (child) or 70 kg. (adult).

Currently, there are no toxicity values for lead in IRIS or HEAST (EPA 1991b). Lead intake affects virtually every system in the body. Among the most serious effects of lead exposure are the central nervous system effects seen in young children. These effects range from impaired learning ability and a decrease in IQ scores to brain damage. Other effects are a decrease in growth of children, a decrease in hearing acuity and adverse effects on the kidneys and hematopoetic systems (CDC 1991). To assess the adverse health effects of lead exposure, EPA currently advises use of the Lead Biokinetic Uptake Model. This model combines intake variables from several potential lead exposure pathways and predicts blood lead levels for children. Predicted blood lead levels greater than 10 ug/dL are considered to present a health hazard.

Table 6.

Noncarcinogenic Toxicity Information for Chemicals of Concern at the North End Superfund Site, Kansas City, MO.*

Compound	Oral Reference Dose (mg/kg/day)	Inhalation Reference Dose (mg/kg/day)	Effects of Concern (oral; inhalation)
Chronic Exposures	(mg/kg/day)	(mg/kg/day)	(or ary minaration)
Chloroethane	ND	1 x 10-1	NA; developmental toxicity
1,2 Dichlorobenzene	9 x 10-2	4 x 10 ⁻²	Liver effects; decreased body weight gain
1,1 Dichloroethane	1 x 10-1	1 x 10-1	NA; kidney damage
1,1 Dichloroethene	9 x 10-3	ND	Liver lesions; NA
1,2 Dichloroethene	1 x 10-2	ND	Decreased hematocrit and hemoglobin; NA
Tetrachloroethene	1 x 10-2	ND	Hepatotoxicity; NA
1,1,1 Trichloroethane	9 x 10-2	3 x 10-1	Hepatotoxicity, hepatotoxicity
Trichloroethene**	6 x 10-3	ND	Kidney and liver effects; NA
Subchronic Exposur	·es		
Chloroethane	ND	1 x 10 ¹	NA; developmental toxicity
1,2 Dichlorobenzene	9 x 10-1	4 x 10 ⁻¹	Liver effects; decreased body weight gain
1,1 Dichloroethane	1 x 100	1 x 10 ⁰	NA; kidney damage
1,1 Dichloroethene	9 x 10-3	ND	Liver lesions; NA
1,2 Dichloroethene	1 x 10-1	ND	Decreased hematocrit and hemoglobin; NA
Tetrachloroethene	1 x 10-1	ND	Hepatotoxicity; NA
1,1,1 Trichloroethane	9 x 10-1	3 x 10 0	Hepatotoxicity, hepatotoxicity
Trichloroethene**	6 x 10-3	ND	Kidney and liver effects; NA

^{*} All toxicity values were taken from the 1991 Annual Volume of the Health Effects Assessment Summary Tables, except for the Chronic Reference Dose for Tetrachloroethene. That value was taken from the Integrated Risk Information System Database.

**Toxicity Information provided by the Environmental Criteria and Assessment Office (Appendix III).

4.2 Carcinogenic Effects

Slope factors found in IRIS and HEAST are used to assess carcinogenic effects for specific contaminants. A Slope factor is a plausible upper-bound estimate of the probability of a response per unit intake of a chemical expressed over a lifetime. Slope factors for the specific contaminants, weight of evidence classifications for carcinogenicity, and site of tumor data are summarized in Table 7.

5.0 RISK CHARACTERIZATION

5.1 Noncarcinogenic Risk

Noncancer hazard quotients are calculated for each contaminant in each pathway by dividing the Chronic Daily Intake (CDI) by the RfD. The noncancer hazard quotients within an exposure pathway are summed to give the pathway hazard index. The Total Hazard Index is then calculated by summing the pathway hazard indices. According to RAGS (EPA 1989), human health risks may exist when the Total Hazard Index exceeds unity (1.0).

5.1.1 RME 1

The pathway hazard indices for ingestion of contaminated drinking water and inhalation of volatilized VOCS during showering were 3.1 x 10-4 and 2.4 x 10-5, respectively. Chemicals which drove the risk assessment were 1,1 dichloroethene for ingestion of contaminated drinking water and 1,1 dichloroethane for inhalation of volatilized VOCs. Total Hazard Index calculated for RME 1 was 3.3 x 10-4 (Table 8). Because this is less than 1.0, potential health risks are not indicated for a child living across the Blue River from the North End Site, ingesting 1 liter of contaminated drinking water per day and inhaling volatilized VOCs 0.25 hours per day, 365 days per year for 6 years.

The Lead Biokinetic Uptake Model was used to predict blood lead levels of a child living in the trailer park across from the North End Site. Groundwater concentrations of 0.918 ug/L were used in the intake calculations. Blood lead levels between 2.77 and 3.21 ug/dL were predicted by the model. Because these values are well below 10 ug/dL, predicted lead concentrations in groundwater are not expected to cause adverse health effects to a child living across the Blue River from the North End Site.

Table 7.

Carcinogenic Toxicity Values for Chemicals of Concern Found at the North End Superfund Site, Kansas City, MO.*

Contaminant	Oral Slope Factor (mg/kg/day)-1	Inhalation Slope Factor (mg/kg/day)-1	Weight of Evidence Classification and Tumor Site (oral; inhalation)
Chloromethane	1.3 x 10-2	6.0 x 10 ⁻³	C - Kidney; kidney
1,1 Dichloroethane	ND	ND	C - NA; hemangiosarcoma
1,2 Dichloroethane	9.1 x 10 ⁻²	9.1×10^{-2}	B2 - Circulatory; circulatory
1,1 Dichloroethene	6.0 x 10 ⁻¹	1.2×10^{0}	C - Kidney; adrenal
Trichloroethene	1.1 x 10-2	1.7 x 10-2	B2 - Lung; liver
Vinyl chloride	1.9 x 10 ⁰	2.9 x 10-1	A - Liver; lung

^{*} All slope factors except for cholormethane and trichloroethene were obtained from the Integrated Risk Information System database. Slope Factors for cholormethane and trichloroethene were obtained from the 1991 Annual Volume of the Health Effects Assessment Summary Tables.

Table 8.

Hazard Index Values for RME 1
North End Superfund Site, Kansas City, MO

Pathway: Ingestion of c	Ingestion of contaminated drinking water by a 15 kg child over a 6 year period.	water by a 15	kg child over a	6 year period.	
		Chronic Daily			
Chemical	Concentration (mg/L)	Intake (mg/kg/day)	RfD (mg/kg/day)	Hazard Index	Pathway Hazard Index
1,2 Dichlorobenzene	0.0000521	3.2 x 10-6	9 x 10-1	3.6 x 10-6	
1,1 Dichloroethane	0.00149	9.2×10^{-5}	1×10^{0}	9.2×10^{-5}	
1,1 Dichloroethene	0.00084	1.7×10^{-6}	9×10^{-3}	1.9×10^{-4}	
1,2 Dichloroethene	0.000058	1.2×10^{-7}	1×10^{-1}	1.2×10^{-6}	
Tetrachloroethene	0.0000855	1.7×10^{-7}	1×10^{-1}	1.7×10^{-6}	
1,1,1 Trichloroethane	0.000578	1.2×10^{-6}	9×10^{-1}	1.3×10^{-6}	
Trichloroethene	0.0000569	1.2×10^{-7}	6×10^{-3}	1.9×10^{-5}	3.1×10^{-4}
Pathway: Inhalation of volati	volatized compounds	during showeri	during showering by a 15 kg child over a 6	child over a 6 ye	year period.
		Chronic Daily			
Chemical	Concentration (mg/m ³)	Intake (mg/kg/day)	RfC (mg/kg/day)	Hazard Index	Pathway Hazard Index
Chloroethane	0.00039	5.0×10^{-6}	1 x 10 1	5.0×10^{-7}	
1,2 Dichlorobenzene	0.0000521	6.6×10^{-7}	4×10^{-1}	1.7×10^{-6}	
1,1 Dichloroethane	0.00149	1.9 x 10-5	1×10^{0}	1.9×10^{-5}	
1,1,1 Trichloroethane	0.000578	7.4×10^{-6}	3×10^{0}	2.5×10^{-6}	2.4×10^{-5}
		Total Hazard Index	ıdex		3.3 x 10-4

-		

5.1.2 RME 2

The pathway hazard indices for ingestion of contaminated drinking water and inhalation of volatilized VOCS during showering were 4.0 x 10-3 and 5.4 x 10-5, respectively. Chemicals which drove the risk assessment were 1,1 dichloroethene for ingestion of contaminated drinking water and 1,1 dichloroethane for inhalation of volatilized VOCs. Total Hazard Index calculated for RME 2 was 4.0 x 10-3 (Table 9). Because this is less than 1.0, potential health risks are not indicated for an adult living across the Blue River from the North End Site, ingesting 2 liters of contaminated drinking water per day and inhaling volatilized VOCs 0.25 hours per day, 365 days per year for 30 years.

The Lead Biokinetic Uptake Model was used to predict blood lead levels of an adult living in the trailer park across from the North End Site. Groundwater concentrations of 0.918 ug/L were used in the intake calculations. Blood lead levels between 2.77 and 3.21 ug/dL were predicted by the model. Because these values are well below10 ug/dL, predicted lead concentrations in groundwater are not expected to cause adverse health effects to an adult living across the Blue River from the North End Site.

5.2 Carcinogenic Risk

Lifetime excess cancer risks are calculated for each contaminant in each pathway by multiplying the slope factor by the Chronic Daily Intake (CDI). Within a pathway, the chemical specific risks are summed to give the total pathway risk. The Total Lifetime Excess Cancer Risk is then determined by summing the total pathway risks. According to RAGS (EPA 1989), a cancer risk may exist when the Total Lifetime Excess Cancer Risk exceeds the 1 x 10-4 to 1 x 10-6 range.

5.2.1 RME 1

Pathway cancer risks for ingestion of contaminated drinking water and inhalation of volatilized VOCs during showering were 4.2 x 10-6 and 1.2 x 10-6, respectively. The chemical which drove the risk assessment was 1,1 dichloroethene for ingestion of contaminated drinking water and inhalation of volatilized VOCs. Total Excess Lifetime Cancer Risk calculated for RME 1 was 5.4 x 10-6 (Table 10). Although the lower end of the range of acceptable cancer risk has been exceeded, the predicted excess lifetime cancer risk is still well below the upper end of the acceptable range for a child living across the Blue River from the North End Site, ingesting 1 liter of contaminated drinking water per day and inhaling volatilized VOCs 0.25 hours per day, 365 days per year for 6 years.

Table 9.

Hazard Index Values for RME 2 North End Superfund Site, Kansas City, MO.

Pathway: Ingestion of c	Ingestion of contaminated drinking water by a 70 kg adult over a 30 year period.	3 water by a 70	kg adult over a	30 year period.	
		Chronic Daily			
7,50	Concentration	Intake	RfD	;	Pathway
Cnemical	(mg/L)	(mg/kg/day)	(mg/kg/day)	Hazard Index	Hazard Index
1,2 Dichlorobenzene	0.0000521	1.5 x 10-6	9 x 10-2	1.7 x 10-5	
1,1 Dichloroethane	0.00149	4.2×10^{-5}	1×10^{-1}	4.2 x 10-4	
1,1 Dichloroethene	0.00084	2.4×10^{-5}	9×10^{-3}	2.7×10^{-3}	
1,2 Dichloroethene	0.000058	1.6×10^{-6}	1×10^{-2}	1.6×10^{-4}	
Tetrachloroethene	0.0000855	2.4×10^{-6}	1×10^{-2}	2.4×10^{-4}	
1,1,1 Trichloroethane	0.000578	1.6×10^{-5}	9 x 10-2	1.8×10^{-4}	
Trichloroethene	0.0000569	1.6×10^{-6}	6×10^{-3}	2.7×10^{-4}	4.0×10^{-3}
Pathway: Inhalation of volati	volatized compounds	zed compounds while showering by	g by a 70 kg ac	a 70 kg adult over a 30 year period.	ar period.
	Concentration	Chronic Daily Intake	BfC		Dothway
Chemical	(mg/m ³)	(mg/kg/day)	(mg/kg/day)	Hazard Index	Hazard Index
Chloroethane	0.00039	1.2 × 10-6	1 x 10 1	1.2 x 10-7	
1,2 Dichlorobenzene	0.0000521	1.5×10^{-7}	4×10^{-2}	3.8×10^{-6}	
1,1 Dichloroethane	0.00149	4.4 x 10-6	1×10^{-1}	4.4×10^{-5}	
1,1,1 Trichloroethane	0.000578	1.7×10^{-6}	3×10^{-1}	5.7×10^{-6}	5.4 x 10-5
		Total Hazard Index	dex		4.0 x 10-3

-	

Table 10.

Excess Lifetime Cancer Risks for RME 1 North End Superfund Site, Kansas City, MO.

The management of the company of the	reserved of communication of a 13 ng child over a 0 year period.				
		Chronic Daily			
į	Concentration	Intake	Slope Factor		Pathway
Chemical	(mg/L)	(mg/kg/day)	(mg/kg/day)-1	Cancer Risk	Cancer Risk
Chloromethane	0.0000972	5.5×10^{-7}	1.3 x 10-2	7.2 x 10-9	
1,2 Dichloroethane	0.0000481	2.7×10^{-7}	9.1×10^{-2}	2.5×10^{-8}	
1,1 Dichloroethene	0.00084	4.8 x 10-6	6.0×10^{-1}	2.9 x 10-6	
Trichloroethene	0.0000569	3.2×10^{-7}	1.1×10^{-2}	3.6×10^{-9}	
Vinyl Chloride	0.000116	6.7×10^{-7}	1.9×10^{0}	1.2×10^{-6}	4.2 x 10-6
Fainway: Innalation volatized	ofatized compounds di	uring showering	compounds during showering by a 15 kg child over a 6 year period.	d over a 6 year	period.
	3	Chronic Daily	Ş		:
Chemical	Concentration (mg/m ³)	intake (mg/kg/day)	Slope Factor (mg/kg/day)-1	Cancer Risk	Pathway Cancer Risk
Chloromethane	0.0000972	1.2 x 10-7	6.3 x 10-3	7.6 x 10-10	
1,2 Dichloroethane	0.0000481	5.7×10^{-8}	9.1 x 10-2	5.1 x 10-9	
1,1 Dichloroethene	0.00084	1.0×10^{-6}	1.2×10^{0}	1.2 x 10-6	
Trichloroethene	0.0000569	6.7×10^{-8}	1.7×10^{-2}	1.0×10^{-9}	
Vinyl Chloride	0.000116	1.4×10^{-7}	2.9×10^{-1}	4.0×10^{-8}	1.2×10^{-6}
		Excess Lifetin	Excess Lifetime Cancer Risk		5.4 x 10-6

··	Tokan e	

5.2.2 RME 2

Pathway cancer risks for ingestion of contaminated drinking water and inhalation of volatilized VOCs during showering were 9.0 x 10-6 and 3.2 x 10-5, respectively. The chemical which drove the risk assessment was 1,1 dichloroethene for ingestion of contaminated drinking water and inhalation of volatilized VOCs. Total Excess Lifetime Cancer Risk calculated for RME 2 was 4.1 x 10-5 (Table 11). Although the lower end of the range of acceptable cancer risks has been exceeded, the predicted excess lifetime cancer risk is still well below the upper end of the acceptable range for an adult living across the Blue River from the North End Site, ingesting 2 liters of contaminated drinking water per day and inhaling volatilized VOCs 0.25 hours per day, 365 days per year for 30 years.

5.3 Uncertainties

Several areas of uncertainty are inherent in the risk assessment process. Most intake variables used are 95% upper confidence limits of the mean variable value. This may overestimate the true risk posed by the site. Many RfDs, RfCs and SFs are based on toxicity tests carried out on animals. It is not known if results of these tests are applicable to humans.

The Lead Biokinetic Uptake Model used to predict blood lead levels was developed for children aged 0-6 years, the ages at which effects from lead exposure are most dramatic. Effects of lead exposure are less prominent in older children and adults, thus the risk for adults from ingesting lead at the North End Site is probably lower than estimated in this assessment.

Four contaminants of concern undetected during the second round of sampling were retained in this risk assessment based upon an assumption that mixing will occur during movement of groundwater. This assumption may over- or underestimate the true risk posed by the site.

6.0 SUMMARY

The North End Site was used as a landfill for the burial of lead-contaminated wastes. A soil removal action was completed and groundwater monitoring wells installed. Total lead and some VOCs were detected in groundwater under the site. EPA directed DOH to assess the risks posed to a hypothetical future offsite resident ingesting contaminated drinking water and inhaling volatilized VOCs while showering.

Table 11.

Excess Lifetime Cancer Risks for RME 2 North End Superfund Site, Kansas City, MO.

rathway: ingestion of contai	contaminated drinking water by a /0 kg aduit over a 50 year period.	S water by a /U	Rg addit over a	on year perion.	
		Chronic Daily			,
Chemical	Concentration (mg/L)	Intake (mg/kg/day)	Slope Factor (mg/kg/day)-1	Cancer Risk	Pathway Cancer Risk
Chloromethane	0.0000972	1.1 x 10-6	1.3 x 10-2	1.5 x 10-8	
1,2 Dichloroethane	0.0000481	5.9×10^{-7}	9.1 x 10-2	5.4×10^{-8}	
1,1 Dichloroethene	0.00084	1.0×10^{-5}	6.0×10^{-1}	6.2×10^{-6}	
Trichloroethene	0.0000569	7.0×10^{-7}	1.1 x 10-2	7.7×10^{-9}	
Vinyl Chloride	0.000116	1.4×10^{-6}	1.9×100	2.7 x 10-6	$9.0 \times 10-6$
I athway. Annaiathon of Vola		Chronic Doily	Chronic Delle	ing over a 30 ye	ear periou.
Chomicol	Concentration	Intake	Slope Factor	Compose Diel.	Pathway Canada Dial
Chemical	(mg/m ²)	(mg/kg/day)	(mg/kg/day)-1	Cancer Risk	Cancer KISK
Chloromethane	0.0000972	3.0×10^{-6}	6.3 x 10-3	1.8 x 10-8	
1,2 Dichloroethane	0.0000481	1.5×10^{-6}	9.1 x 10-2	1.4×10^{-7}	
1,1 Dichloroethene	0.00084	2.6×10^{-5}	1.2×10^{0}	3.1×10^{-5}	
Trichloroethene	0.0000569	1.7×10^{-6}	1.7×10^{-2}	2.8×10^{-8}	
Vinyl Chloride	0.000116	3.6×10^{-6}	2.9 x 10-1	1.0×10^{-6}	3.2×10^{-5}
		Excess Lifetime Cancer Risk	Cancer Risk		4.1 x 10-5

Two RMEs were considered for future land use: a child (RME 1) and an adult (RME 2) ingesting contaminated drinking water and inhaling volatilized VOCs while showering. There were no noncarcinogenic risks posed to a child or adult ingesting contaminated groundwater or inhaling volatilized VOCs while showering. Pathway cancer risks ranged from 1.2 x 10-6 to 3.2 x 10-5. While these estimates exceed the lower end of the acceptable cancer risk range (1 x 10-6), they are still below the upper end of the acceptable range (1 x 10-4).

The Lead Biokinetic Uptake model predicted Blood Lead Levels ranging from 2.77 to 3.21 ug/dL. Because these levels do not exceed 10 ug/dL., a health hazard is not considered to exist from ingestion of contaminated drinking water across the Blue River from the North End Site.

LITERATURE CITED

- Centers for Disease Control (CDC). 1991. Preventing Lead Poisoning in Children. U. S. Department of Health and Human Services, Atlanta, GA.
- Environmental Criteria and Assessment Office (ECAO). 1991. Inhalation Exposure to Volatile Organic Compounds from Showering with Contaminated Groundwater (Park Mobile Home Court Site/Norfolk, NE).
- Environmental Protection Agency (EPA). 1989. Risk assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual (Part A). Office of Emergency and Remedial Response. EPA/540/1-89/002.
- Environmental Protection Agency (EPA). 1990. Exposure Factors Handbook. Office of Health and Environmental Assessment. EPA/600/8-89/043.
- Environmental Protection Agency (EPA). 1991a. Human Health Evaluation Manual, Supplemental Guaidance: (Standard Default Exposure Factors.) OSWER Directive 9285.6-03.
- Environmental Protection Agency (EPA). 1991b. Health Effects Assessment Summary Tables, Annual FY-1991. Office of Emergency and Remedial Response. OERR 9200.6-303 (91-1).
- Environmental Protection Agency (EPA). 1991c. Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual (Part B, Development of Risk-based Preliminary Remediation Goals). Office of Emergency and Remedial Response. OERR 9285.7-01B. December, 1991.

APPENDIX I
Summary of Groundwater Sampling Results
from the North End Site

		,	

TABLE 4

RESULTS OF GROUND WATER ANALYSES

MARCH 13,1991

UNITE

UNITE

PARAMETER	UNITS	RAU-MW -001-15	RAU-MW -001D-15	RAU-MW -002-15	RAU-MW -003-15	RAU-MW -003D-15
WATER LEVEL	ft-msl	733.85	736.66	733.16	733.86	736.60
GENERAL CHEMISTRY						
pH	s.u.	6.4	7.1	6.1	6.5	7.0
SPECIFIC CONDUCTANCE	umho/cm	1500	740	3100	850	540
ACIDITY AS CaCO3	mg/l	<1.0	16	1.5	<1.0	<1.0
ALKALINITY AS CaCO3	mg/l	470	430	240	300	280
NITRATES AS NO3-N	mg/l	0.29	0.11	0.24	0.30	0.13
PHENOLICS	mg/l	<0.005	<0.005	0.009	0.008	0.006
TOTAL LEAD	mg/l	0.058	0.024	0.049	0.063	0.010
DISSOLVED LEAD	mg/1	<0.003	<0.003	<0.003	₹0.003	<0.003
POLYCHLORINATED BIPHENYL	µg/1	<1.0	<1.0	<1.0	<1.0	<1.0
	μ9/1	11.0	\1.0	1	1	11.0
VOLATILE ORGANIC COMPOUNDS						
ACROLEIN	μg/l	<50 450	<50	<50	<125	<50
ACRYLONITRILE	μg/l	<50	<50	<50	<125	<50
BENZENE	µg/l	<5	<5	<5	<12	< 5
BROMODICHLOROMETHANE	µg/l	< 5	<5	<5	<12	< 5
BROMOFORM	µg/l	<5	< 5	<5	<12	< 5
BROMOMETHANE	µg/l	<10	<10	<10	<25	<10
CARBON TETRACHLORIDE	µg/l	< 5	<5	(5	<12	< 5
CHLOROBENZENE	μg/l	<u> </u>	< 5	<5	<12	< 5
CHLOROETHANE	ug/l	160	<10	<10	<25	<10
2-CHLOROETHYLVINYL ETHER	µg/l	<10	<10	₹10	<25	<10
CHLOROFORM	µg/l	<5	<5	< 5	<12	< 5
CHLOROMETHANE	µg/l	<10	<10	<10	<25	<10
DIBROMOCHLOROMETHANE	μg/l	<5	< 5	<5	<12	< 5
1,2-DICHLOROBENZENE	µg/1	<5	< 5	<5	<12	< 5
1,3-DICHLOROBENZENE	μg/l	<5	<5	<5	<12	< 5
1,4-DICHLOROBENZENE	μg/l	₹5	<5	< 5	(12-	√ 5
1,1-DICHLOROETHANE	μ g /l	200	< 5	8	(35)	∤ <5
1,2-DICHLOROETHANE	μg/l	7.5	< 5	< 5	(12	< 5
1,1-DICHLOROETHENE	μg/l	297		< 5	270	<5
1,2-DICHLOROETHENE	μg/l	-/2/	< 5	< 5	6	<5
1,2-DICHLOROPROPANE	µg/1	45	₹5	₹5	₹12	< 5
cis-1,3-DICHLOROPROPANE	μg/l	< 5	<5	< 5	<12	< 5
trans-1,3-DICHLOROPROPANE	μg/l	< 5	<5	< 5	<12	<5
ETHYLBENZENE	µg/1	< 5	< 5	< 5	<12	<5
METHYLENE CHLORIDE	μg/1	<10	<10	<10	<25	<10
1,1,2,2-TETRACHLOROETHANE	μg/l	<5	<5	<5	<12	∫ <5
TETRACHLOROETHENE	μg/l	<5	<5	<5	5	₹ <5
TOLUENE	μg/1	(5	<5	<5	<12	<5
1,1,1-TRICHLOROETHANE	µg/l	38	₹5	< 5	67	[↑] <5
1,1,2-TRICHLOROETHANE	µg/1	75	< 5	₹5	<12	<5
TRICHLOROETHENE	μg/l	<5	<5	<5	<12	<5
TRICHLOROFLOUROMETHANE	μg/l	<5	<5	< 5	<12	< 5
VINYL CHLORIDE	μg/l	23	<10	<10	16	<10
TOTAL VOCs	μg/l	452	0	8	400	0

TABLE 4 (CONTINUED)

PARAMETER	UNITS	RAU-MW	RAU-MW	RAU-MW -005-15	RAU-MW -006-15	RAU-MW 006R-15
		-003A-15	-004-15	-005-15	-000-13	0068-15
WATER LEVEL	ft-msl	734.69	739.36	743.69	743.91	REPLICATE
GENERAL CHEMISTRY				-		
pH	s.u.	6.2	6.6	6.0	6.3	6.4
SPECIFIC CONDUCTANCE	umho/cm	600	2900	1600	960	950
ACIDITY AS CaCO3	mg/l	<1.0	<1.0	<1.0	1	<1.0
ALKALINITY AS CaCO3	mg/l	140	450	110	140	140
NITRATES AS NO3-N	mg/l	0.16	1.00	0.18	0.19	0.21
PHENOLICS	mg/l	0.007	0.006		<0.005	<0.005
TOTAL LEAD	mg/l	0.007	0.058	0.026	0.015	0.028
DISSOLVED LEAD	mg/l	<0.003	0.020	<0.003	<0.003	₹0.003
POLYCHLORINATED BIPHENYL	μg/1	<1.0	<1.0	<1.0	(1.0	<1.0
	μ9/1	\1.0	\1.0	\1.0	(1.0	\1.0
VOLATILE ORGANIC COMPOUNDS	,-					
ACROLEIN	μg/l	<50	<50	<50	<50	<50
ACRYLONITRILE	µg/l	<50	<50	<50	<50	<50
BENZENE	µg/l	<5	<5	< 5	<5	<5
BROMODICHLOROMETHANE	µg/l	<5	<5	<5	<5	<5
BROMOFORM	µg/l	<5	<5	<5	< 5	<5
BROMOMETHANE	µg/l	<10	<10	<10	<10	<10
CARBON TETRACHLORIDE	µg/l	<5	<5	<5	< 5	< 5
CHLOROBENZENE	µg/l	<5	<5	<5	\ \ 5	<5
CHLOROETHANE	µg/l	<10	<10	<10	<10	<10
2-CHLOROETHYLVINYL ETHER	µg/1	<10	<10	<10	<10	<10
CHLOROFORM	µg/l	<.5_	<5	<5	< 5	< 5
CHLOROMETHANE	μg/l	20	<10	<10	<10	<10
DIBROMOCHLOROMETHANE	µg/l	₹5	<5	〈 5	<5	₹5
1,2-DICHLOROBENZENE	µg/l	<5	<5	<5	< 5	<5
1,3-DICHLOROBENZENE	µg/l	<5	<5	<5	< 5	<5
1,4-DICHLOROBENZENE	µg/l	(5)	(5 (6)	<5	< 5	< 5
1,1-DICHLOROETHANE	μg/l	9	(6)	<5	< 5	₹5
1,2-DICHLOROETHANE	μg/l	\(\frac{5}{5}\)	₹5	<5	₹5	₹5
1,1-DICHLOROETHENE	μg/l	120	29	< 5	< 5	< 5
1,2-DICHLOROETHENE	µg/1	~ <5	₹5	<5	<5	< 5
1,2-DICHLOROPROPANE	µg/1	₹5	₹5	< 5	< 5	<5
cis-1,3-DICHLOROPROPANE	µg/1	< 5	(5	<5	< 5	< 5
trans-1,3-DICHLOROPROPANE	μg/l	<5	<5	< 5	< 5	<5
ETHYLBENZENE	μg/l	<5	<5	< 5	< 5	₹5
METHYLENE CHLORIDE	µg/l	<10	<10	<10	<10	<10
1,1,2,2-TETRACHLOROETHANE	µg/1	<5	< 5	<5	<5	<5
TETRACHLOROETHENE	μg/l	28	₹ ₹5	<5	<5	<5
TOLUENE	μg/1	73	\$5	<5	<5	< 5
1,1,1-TRICHLOROETHANE	µg/1	37	17	<5	< 5	< 5
1,1,2-TRICHLOROETHANE	µg/1		(5	<5	<5	<5
TRICHLOROETHENE	µg/1	(5_3	(5	<5	<5	<5
TRICHLOROFLOUROMETHANE	µg/1	₹5	⟨5	<5	<5	<5
VINYL CHLORIDE	µg/1	<10	<10	<10	<10	<10
·· -	[]	1	1	1		1
TOTAL VOCs	µg/1	217	52	1	0	0
	""		1	1		

 (*Autority in

TABLE 4 (CONTINUED)

PARAMETER	UNITS	RAU-MW	RAU-MW	RAU-MW	RAU-MW	RAU-MW
		-007-15	-008-15	-009-15	-010-15	-011-15
		7.5.15	***			
WATER LEVEL	ft-msl	746.43	738.31	743.91	732.83	733.08
GENERAL CHEMISTRY						
рн	s.u.	6.3	6.9	6.2	5.9	6.6
SPECIFIC CONDUCTANCE	umho/cm	910	940	510	2900	960
ACIDITY AS CaCO3	mg/l	<1.0	<1.0	<1.0	8	<1.0
ALKALINITY AS CaCO3	mg/l	83	460	68	170	200
NITRATES AS NO3-N	mg/l	1.30	0.17	<0.10	0.44	0.26
PHENOLICS	mg/l	<0.005	<0.005	<0.005	<0.005	<0.005
TOTAL LEAD	mg/l	0.009	0.083	0.015_	_0.066	0.030
DISSOLVED LEAD	mg/l	<0.003	<0.003	<0.003	<0.003	<0.003
POLYCHLORINATED BIPHENYL	µg/1	<1.0	<1.0	<1.0	<1.0	<1.0
VOLATILE ORGANIC COMPOUNDS		ţ		-	ĺ	ļ
ACROLEIN	μg/l	<50	<50	<50	<250	<50
ACRYLONITRILE	µg/1	<50	<50	<50	<250	<50
BENZENE	µg/1	<5	<5	(5	<25	<5
BROMODICHLOROMETHANE	µg/1	<5	<5	<5	<25	<5
BROMOFORM	µg/1	<5	<5	<5	<25	<5
BROMOMETHANE	pg/l	<10	<10	<10	<50	<10
CARBON TETRACHLORIDE	µg/l	<5	<5	<5	<25	<5
CHLOROBENZENE	μg/l	<5	<5	<5	(25	<5
CHLOROETHANE	µg/1	<10	<10	<10	/37	<10
2-CHLOROETHYLVINYL ETHER	µg/1	<10	₹10	<10	₹50	₹10
CHLOROFORM	μg/1	<5	<5	<5	<25	<5
CHLOROMETHANE	ug/l	<10	<10	<10	<50	<10
DIBROMOCHLOROMETHANE	µg/1	<5	<5	<5_	<25	<5
1,2-DICHLOROBENZENE	μg/1	<5	<5	15	<25	<5
1,3-DICHLOROBENZENE	µg/1	< 5	<5	<5	<25	<5
1,4-DICHLOROBENZENE	µg/1	<5	<5	<5	<25	1
1,1-DICHLOROETHANE	µg/1	<5	< 5	<5	580	< <u>5</u>
1,2-DICHLOROETHANE	µg/1	₹5	<5	<5	₹25	₹5
1,1-DICHLOROETHENE	<u>ug/l</u>	<5	<5	2	83	<5
1,2-DICHLOROETHENE	μg/l	<5	<5	<5 /3	23	<5
1,2-DICHLOROPROPANE	µg/1	<5	₹5	(5	₹25	<5
cis-1,3-DICHLOROPROPANE	µg/1	<5	<5	<5	<25	<5
trans-1,3-DICHLOROPROPANE	µg/1	<5	<5	<5	<25	<5
ETHYLBENZENE	µg/l	₹5	<5	<5	<25	<5
METHYLENE CHLORIDE	µg/1	<10	<10	<10	<50	<10
1,1,2,2-TETRACHLOROETHANE	μg/l	<5	<5	<5	<25	<5
TETRACHLOROETHENE	µg/1	<5	<5	<5	⟨25	< 5
TOLUENE	ug/1	<5	<5	<5	<25	<5
1,1,1-TRICHLOROETHANE	µg/1	<5	<5	<5	210	<5
1,1,2-TRICHLOROETHANE	µg/1	<5	₹5	(5.	- (25	<5
TRICHLOROETHENE	μg/l	<5	<5	13	₹25	<5
TRICHLOROFLOUROMETHANE	µg/1	<5	(5		₹25	\·<5
VINYL CHLORIDE	µg/1	<10	<10/	<10	34	<10/
	1	1	1	1		1
TOTAL VOCs	µg/1	0	0	31	967	8

TABLE 4 (CONTINUED)

PARAMETER	UNITS	RAU-MW -012-15	RAU-MW -012R-15	RAU-MW -000-15	TRIP BLANK
WATER LEVEL	ft-msl	733.47	REPLICATE	BLANK	
GENERAL CHEMISTRY					
pH	s.u.	6.6		6.6	
SPECIFIC CONDUCTANCE	umho/cm	1600		100	
ACIDITY AS CaCO3	mg/l	<1.0		11.	
ALKALINITY AS CaCO3	mg/l	680		7.8	
NITRATES AS NO3-N	mg/l	0.43	}	0.16	
PHENOLICS	mg/1	<0.005		<0.005	
TOTAL LEAD		0.100		<0.003	
DISSOLVED LEAD	mg/l	<0.003		<0.003	
	mg/l	ł)	l	
POLYCHLORINATED BIPHENYL	μg/l	<1.0	ļ	<1.0	
VOLATILE ORGANIC COMPOUNDS		1			
ACROLEIN	μg/l	<50	<50		<50
ACRYLONITRILE	µg/l	₹50	<50		<50
BENZENE	µg/l	<5	< 5		< 5
BROMODICHLOROMETHANE	μg/l	₹5	< 5		<5
BROMOFORM	μg/l	<5	<5	}	<5
BROMOMETHANE	μg/l	<10	<10		<10
CARBON TETRACHLORIDE	µg/l	<5	<5		<5
CHLOROBENZENE	μg/l	<5	<5		<5
CHLOROETHANE	µg/1	<10	<10		<10
2-CHLOROETHYLVINYL ETHER	μg/l	<10	<10		<10
CHLOROFORM	μg/1	<5	<5		<5
CHLOROMETHANE	μg/1	<10	<10	Ì	<10
DIBROMOCHLOROMETHANE	μg/1	<5	<5		<5
1,2-DICHLOROBENZENE	μg/1	<5	<5		<5
1,3-DICHLOROBENZENE	μg/1	<5	<5	ļ	(5
1,4-DICHLOROBENZENE	μg/1	(5	.55		<5
1,1-DICHLOROETHANE	1	120	120		<5
1,2-DICHLOROETHANE	μg/1	75	(5		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
1,1-DICHLOROETHENE	μg/l		1	ļ	< 5
1,1-DICALOROETHENE 1,2-DICHLOROETHENE	μg/l		(5.	}	1
``	μg/1		(9		< 5
1,2-DICHLOROPROPANE	µg/l	₹5	<5		₹5
cis-1,3-DICHLOROPROPANE	μg/l	<5	< 5		< 5
trans-1,3-DICHLOROPROPANE	ha/1	<5	<5	İ	< 5
ETHYLBENZENE	μ g /l	<5	<5	Ì	<5
METHYLENE CHLORIDE	µg/l	<10	<10		<10
1,1,2,2-TETRACHLOROETHANE	μg/l	<5	<5		< 5
TETRACHLOROETHENE	μg/l	₹5	<5	i	<5
TOLUENE	µg/1	< 5	< 5	İ	< 5
1,1,1-TRICHLOROETHANE	µg/1	<5	<5	}	<5
1,1,2-TRICHLOROETHANE	µg/1	< 5	<5	1	<5
TRICHLOROETHENE	µg/1	<5	<5		<5
TRICHLOROFLOUROMETHANE	µg/1	(5		1	<5
VINYL CHLORIDE	μg/l	8/	10		<10
TOTAL VOCs	µg/1	137	139		o

TABLE 5

RESULTS OF GROUND WATER ANALYSES
MAY 3,1991

ENERAL CHEMISTRY pH SPECIFIC CONDUCTANCE ALKALINITY AS CaCO3 NITRATES AS NO3-N PHENOLICS TOTAL LEAD DISSOLVED LEAD POLYCHLORINATED BIPHENYLS OLATILE ORGANIC COMPOUNDS ACROLEIN ACRYLONITRILE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE	\$1.4 bibliographic control con	RAU-MW	RAU-MW	RAU-MW	RAU-MW -003-16	RAU-MW
ENERAL CHEMISTRY ph SPECIFIC CONDUCTANCE ALKALINITY AS CaCO3 NITRATES AS NO3-N PHENOLICS TOTAL LEAD DISSOLVED LEAD POLYCHLORINATED BIPHENYLS OLATILE ORGANIC COMPOUNDS ACROLEIN ACRYLONITRILE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE	4	-001-16	-001D-16	-002A-16	-003-16	-003D-16
ph SPECIFIC CONDUCTANCE ALKALINITY AS CaCO3 NITRATES AS NO3-N PHENOLICS TOTAL LEAD DISSOLVED LEAD POLYCHLORINATED BIPHENYLS OLATILE ORGANIC COMPOUNDS ACROLEIN ACRYLONITRILE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE	ft-msl	734.68	737.61		734.92	737.21
SPECIFIC CONDUCTANCE ALKALINITY AS CaCO3 NITRATES AS NO3-N PHENOLICS TOTAL LEAD DISSOLVED LEAD POLYCHLORINATED BIPHENYLS OLATILE ORGANIC COMPOUNDS ACROLEIN ACRYLONITRILE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE						
ALKALINITY AS CaCO3 NITRATES AS NO3-N PHENOLICS TOTAL LEAD DISSOLVED LEAD POLYCHLORINATED BIPHENYLS OLATILE ORGANIC COMPOUNDS ACROLEIN ACRYLONITRILE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE	s.u.	6.4	6.8	6.0	6.6	6.9
NITRATES AS NO3-N PHENOLICS TOTAL LEAD DISSOLVED LEAD POLYCHLORINATED BIPHENYLS OLATILE ORGANIC COMPOUNDS ACROLEIN ACRYLONITRILE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE	hwpo/cw	1500	700	2900	780	580
PHENOLICS TOTAL LEAD DISSOLVED LEAD POLYCHLORINATED BIPHENYLS OLATILE ORGANIC COMPOUNDS ACROLEIN ACRYLONITRILE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE	mg/l	460	410	290	330	330
TOTAL LEAD DISSOLVED LEAD POLYCHLORINATED BIPHENYLS OLATILE ORGANIC COMPOUNDS ACROLEIN ACRYLONITRILE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE	mg/l	0.32	0.20	0.40	0.40	0.14
DISSOLVED LEAD POLYCHLORINATED BIPHENYLS OLATILE ORGANIC COMPOUNDS ACROLEIN ACRYLONITRILE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE	mg/l	<0.006	<0.006	<0.006	<0.006	<0.006
POLYCHLORINATED BIPHENYLS OLATILE ORGANIC COMPOUNDS ACROLEIN ACRYLONITRILE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE	mg/l	0.130	0.029	0.120	0.130	0.130
OLATILE ORGANIC COMPOUNDS ACROLEIN ACRYLONITRILE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE	mg/l	<0.003	<0.003	<0.003	<0.003	<0.003
ACROLEIN ACRYLONITRILE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE	µg/l	<1.0	<1.0	<1.0	<1.0	<1.0
ACROLEIN ACRYLONITRILE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE			1		1	}
BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE	µg/l	<50	<50	<50	<50	<50
BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE	µg/1	<50	<50	<50	<50	<50
BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE	µg/l	<5	<5	< 5	<5	<5
BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE	µg/1	<5	<5	<5	<5	< 5
CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE	µg/l	<5	<5	₹5	<5	< 5
CHLOROBENZENE CHLOROETHANE	µg/l	<10	<10	<10	<10	<10
CHLOROETHANE	µg/1	<5	<5	₹5	<5	< 5
	µg/1	<5	<5	<5	<5	<5
	µg/1	180	<10	<10	<10	<10
2-CHLOROETHYLVINYL ETHER	µg/1	₹10	710	₹10	710	710
CHLOROFORM	µg/1	<5	< 5	<5	<5	<5
CHLOROMETHANE	µg/l	<10	<10	<10	<10	<10
DIBROMOCHLOROMETHANE	µg/1	< 5	<5	< 5	<5	<5
1,2-DICHLOROBENZENE	µg/l	<5	<5	<5	< 5	(5
1,3-DICHLOROBENZENE	µg/1	<5	<5	<5	<5	<5
1,4-DICHLOROBENZENE	µg/1	1.5	<5	<5	<5_	<5
1,1-DICHLOROETHANE	µg/1	317	<5	<5	44	15
1,2-DICHLOROETHANE	µg/1	(5.	₹5	<5	\(\frac{1}{5}\)	<5
1,1-DICHLOROETHENE	µg/1	86	<5	4.8(J)	410	7) <5
1,2-DICHLOROETHENE	μg/1	₹5	₹5	(5	(5	(5
1,2-DICHLOROPROPANE	µg/1	<5	<5	√5 5	<5	<5
cis-1,3-DICHLOROPROPANE	μg/1	<5	(5	/(5	(5	< 5
trans-1,3-DICHLOROPROPANE	l '	<5	<5	<5	<5	< 5
ETHYLBENZENE	μg/1	<5	<5	/ (5	<5	< 5
METHYLENE CHLORIDE	μg/1	<10	<10	<10	<10	<10
1,1,2,2-TETRACHLOROETHANE		<5	<5	<5	<5	<5
TETRACHLOROETHENE	μg/1 μg/1	<5	<5	<5	<5	< 5
TOLUENE	l l	§5,	<5	< 5		<5
1,1,1-TRICHLOROETHANE	μg/l	(85)	(5	I \	98	N .
			<5	\. ₹5 ₹5	798	(5 (5
1,1,2-TRICHLOROETHANE	μg/l				1	1 (5
TRICHLOROETHENE	µg/1	<5 (5	I .		1	
TRICHLOROFLOUROMETHANE	μg/l μg/l	<5	<5	<5	<5	< 5
VINYL CHLORIDE	ha/1 ha/1	<5 <5	<5 <5	<5 <5	<5 <5	< 5 < 5
TOTAL VOCs	μg/l μg/l	<5	<5	<5	<5	<5 <5 <10

TABLE 5 (CONTINUED)

WATER LEVEL	PARAMETER						
### WATER LEVEL ft-ms1	PARAMETER	UNITS	RAU-MW	RAU-MW	RAU-MW	RAU-MW	RAU-MW
GENERAL CHEMISTRY			-003 Y -19	-004-16	-002-16	-006-16	006R-16
SENERAL CHEMISTRY	WATER LEVEL	ft-msl	736.38	738.91	743.64	744.65	REPLICATE
PH S.U. 6.1 6.3 5.9 6.2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 2			, 55, 55				
SPECIFIC CONDUCTANCE						1	
ALKALINITY AS CACO3	_	l e	j .		1	1	6.1
NITRATES AS NO3-N			ı	l I	t	l .	980
PHENOLICS		i -	3		1	1 2	120
TOTAL LEAD mg/1 0.014 0.400 0.037 0.040 0.00 DISSOLVED LEAD mg/1 (0.003 0.013 (0.003 (0.16	1	0.44
DISSOLVED LEAD			1			1	<0.005
POLYCHLORINATED BIPHENYLS ug/l <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0			I				0.086
VOLATILE ORGANIC COMPOUNDS ACROLEIN		1	í	l .	l e	<0.003	(0.003
ACROLEIN ACRYLONITRILE ACRYLONITRILE BENZENE BENZENE BENZENE BROMODICHLOROMETHANE BROMODICHLOROMETHANE BROMODICHLOROMETHANE BROMOMETHANE BROMOMETHANE BROMOMETHANE BROMOMETHANE BROMOMETHANE CHLOROBENZENE BROMOMETHANE BROMOTICH BROMOTICHEROMETHANE BROMOTICH BROMOTICHEROMETHANE BROMOTICH BROMOTICHEROMETHA	POLYCHLORINATED BIPHENYLS	µg/l	<1.0	<1.0	<1.0	<1.0	<1.0
ACRYLONITRILE	VOLATILE ORGANIC COMPOUNDS						{
ACRYLONITRILE	ACROLEIN	μ g /l	<50	<50	<50	₹50	<50
BENZENE	ACRYLONITRILE	1	<50	<50	<50	<50	<50
BROMODICHLOROMETHANE	BENZENE	1	₹5	₹5	₹5	< 5	< 5
BROMOFORM	BROMODICHLOROMETHANE		<5	<5	<5	< 5	<5
BROMOMETHANE	BROMOFORM	ſ	<5	[1	<5
CARBON TETRACHLORIDE	BROMOMETHANE	t .	<10		l .	1	<10
CHLOROBENZENE	CARBON TETRACHLORIDE	1	₹5)	1	T .	<5
CHLOROETHANE 2-CHLOROETHYLVINYL ETHER µg/1 ⟨10 ⟨10 ⟨10 ⟨10 ⟨10 ⟨10 ⟨10 ⟨10 ⟨10 ⟨10	CHLOROBENZENE		< 5	<5	1	1	<5
2-CHLOROETHYLVINYL ETHER	CHLOROETHANE	I .	1	ľ		t	<10
CHLOROFORM CHLOROMETHANE CHLOROMETHANE CHLOROMETHANE CHLOROMETHANE CHLOROMETHANE CHLOROMETHANE CHLOROBENZENE CHLOROFOTHANE CHLOROPROPANE CHLOROFOTHANE CHLOROPROPANE CHLOROFOTHANE CHLOROPROPANE CHLOROFOTHANE CHLOROPROPANE CHLOROFOTHANE CHLOR	2-CHLOROETHYLVINYL ETHER		l .		•	1	<10
CHLOROMETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROBENZENE DIBROMOCHLOROBENANE DIBROMOCHLOROBENZENE DIBROMOCHLOROBENZENE DIBROMOCHLOROBENE DIBBROMCHIANE DIBBROMCHLOROBENE DIBBROMCHIANE	CHLOROFORM	1	<5	1	1		<5
DIBROMOCHLOROMETHANE	CHLOROMETHANE	l	<10	ſ	1	1	<10
1,2-DICHLOROBENZENE	DIBROMOCHLOROMETHANE	[<5			1	<5
1,3-DICHLOROBENZENE	1,2-DICHLOROBENZENE	i -	₹5)	1)	<5
1,4-DICHLOROBENZENE μg/l ⟨5 ⟨5 ⟨5 ⟨5 ⟨5 ⟨5 ⟨5 ⟨5 ⟨5 ⟨5 ⟨5 ⟨5 ⟨5	1,3-DICHLOROBENZENE	1	1	l .	ľ		<5
1,1-DICHLOROETHANE			[l .	Į.	4	(5
1,2-DICHLOROETHANE		1	•		1	1	<5
1,1-DICHLOROETHENE	, 					1	<5
1,2-D1CHLOROETHENE					L	Į.	(5
1,2-DICHLOROPROPANE						1	<5
Cis-1,3-DICHLOROPROPANE			1	1	1	1	₹5
trans-1,3-DICHLOROPROPANE μg/1 <5			1		1	,	₹5
ETHYLBENZENE μg/l ⟨5 </td <td></td> <td></td> <td>{</td> <td></td> <td>1</td> <td></td> <td>₹5</td>			{		1		₹5
METHYLENE CHLORIDE μg/l <10	-		1)	ľ		<5
1,1,2,2-TETRACHLOROETHANE			i		ľ	I.	<10
TETRACHLOROETHENE μg/l 30 <5			1		l.	4	<5
TOLUENE μg/1 ⟨5 ⟨10					1		<5
1,1,1-TRICHLOROETHANE μg/1 36 13 <5						J.	<5
1,1,2-TRICHLOROETHANE	The state of the s			13	t .	l .	(5
TRICHLOROETHENE μg/1 /3(J) <5 <5 <5 TRICHLOROFLOUROMETHANE μg/1 <5 <5 <5 VINYL CHLORIDE μg/1 <10 <10 <10 <10 <				13	1	1	(5
TRICHLOROFLOURCMETHANE µg/1 <5 <5 <5 VINYL CHLORIDE µg/1 <10 <10 <10 <						1	
VINYL CHLORIDE µg/l <10 <10 <10 <				The state of the s		L	< 5
			1		1	1	(5)
TOTAL VOCS 100/1 152 1 25 1	- TITE CHECKIDE	μу/і	(10	(10	(10	(10	<1g
101AD 10CS µg/1 152.1 25.1 0 0	TOTAL VOCS	μg/l	152.1	25.1	0	0	0

TABLE 5 (CONTINUED)

PARAMETER	UNITS	RAU-MW	RAU-MW	RAU-MW	RAU-MW	RAU-MW
	0	-007-16	-008-16	-009-16	-010-16	-011-16
ATER LEVEL	ft-msl	746.69	738.98	745.46	733.17	733.23
SENERAL CHEMISTRY						
рH	s.u.	6.1	6.8	6.0	5.9	6.8
SPECIFIC CONDUCTANCE	hwpo/cw	920	960	520	25000	970
ALKALINITY AS CaCO3	mg/l	77	450	68	190	300
NITRATES AS NO3-N	mg/l	0.78	0.26	0.21	0.20	0.22
PHENOLICS	mg/l	0.007	0.006	<0.005	<0.006	<0.006
TOTAL LEAD	mg/l	0.010	0.033	0.013	0.054	0.009
DISSOLVED LEAD	mg/l	<0.003	<0.003	<0.003	<0.003	<0.003
POLYCHLORINATED BIPHENYLS	µg/l	<1.0	<1.0	<1.0	<1.0	<1.0
VOLATILE ORGANIC COMPOUNDS						
ACROLEIN	μg/l	<50	<50	<50	⟨250	<50
ACRYLONITRILE	μg/l	<50	<50	<50	<250	<50
BENZENE	μg/l	<5	<5	< 5	<25	< 5
BROMODICHLOROMETHANE	µg/1	<5	<5	< 5	<25	< 5
BROMOFORM	μg/l	<5	<5	< 5	<25	< 5
BROMOMETHANE	µg/l	<10	<10	<10	<50	<10
CARBON TETRACHLORIDE	μg/1	<5	<5	< 5	<25	< 5
CHLOROBENZENE	µg/1	<5	<5	< 5	<25	< 5
CHLOROETHANE	μg/l	<10	<10	<10	<50	<10
2-CHLOROETHYLVINYL ETHER	µg/1	<10	<10	<10	<50	<10
CHLOROFORM	μg/l	<5	<5	< 5	₹25	< 5
CHLOROMETHANE	µg/l	<10	<10	<10	<50	<10
DIBROMOCHLOROMETHANE	µg/1	<5	<5	< 5	<25	< 5
1,2-DICHLOROBENZENE	µg/1	<5	<5	< 5	<25	<5
1,3-DICHLOROBENZENE	μg/l	<5	<5	< 5	<25	<5
1,4-DICHLOROBENZENE	µg/1	< 5	< 5	< 5	<25	< 5
1,1-DICHLOROETHANE	µg/l	<5	<5	<5	640	13
1,2-DICHLOROETHANE	μg/1	75	75	75	₹25.	75
1,1-DICHLOROETHENE	μg/l	<5	<5	< 5	_64	< 5
1,2-DICHLOROETHENE	µg/1	< 5	<5	<5	<25	<5
1,2-DICHLOROPROPANE	μg/l	<5	<5	<5	<25	< 5
cis-1,3-DICHLOROPROPANE	μg/l	<5	(5	<5	<25	<5
trans-1,3-DICHLOROPROPANE	μg/l	<5	<5	<5	<25	<5
ETHYLBENZENE	μg/l	<5	<5	<5	<25	<5
METHYLENE CHLORIDE	μg/l	<10	<10	<10	<50	<10
1,1,2,2-TETRACHLOROETHANE	μg/l	<5	<5	<5	<25	<5
TETRACHLOROETHENE	µg/1	<5	<5	<5	<25	< 5
TOLUENE	μg/l	<5	<5	<5	<25	< 5
1,1,1-TRICHLOROETHANE	μg/1	<5	<5	< 5	230	<5
1,1,2-TRICHLOROETHANE	μg/l	<5	(5	₹5	(25	75
TRICHLOROETHENE	μg/1	(5	<5	12	<25	₹5
TRICHLOROFLOUROMETHANE	μg/1	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(12)	<25	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
VINYL CHLORIDE	μg/1	<10	<10	<10	35 (J)	<10
- I - TI - CIII CIII DI	ha/T		ļ		1 23 (0)	ļ
TOTAL VOCs	μg/l	0	,	12	969	13
	µ9/1		1	12		1
	1	l	1	1	1 .	1

 -		

TABLE 5 (CONTINUED)

22222				228 287	MIDTA
PARAMETER	UNITS	RAU-MW -012-16	RAU-MW -012R-16	RAU-MW -000-15	TRIP BLANK
WATER LEVEL	ft-msl	734.39	REPLICATE	BLANK	
GENERAL CHEMISTRY					1
рн	s.u.	6.6	l l	7.0	
SPECIFIC CONDUCTANCE	umho/cm	1600	!	57	
ALKALINITY AS CaCO3	mg/l	740	}	15	. }
NITRATES AS NO3-N	mg/l	0.10		<0.10	•
PHENOLICS	mg/l	<0.005		0.010	Ì
TOTAL LEAD	mg/l	0.038		0.012	ļ
DISSOLVED LEAD	mg/l	<0.003		<0.003	
POLYCHLORINATED BIPHENYLS	µg/1	<1.0	}	<1.0	
VOLATILE ORGANIC COMPOUNDS]		}		
ACROLEIN	μg/l	<50	<50	<50	<50
ACRYLONITRILE	µg/1	<50	<50	<50	<50
BENZENE	μg/l	<5	<5	<5	<5
BROMODICHLOROMETHANE	μg/l	<5	<5	<5	< 5
BROMOFORM	µg/1	<5	<5	<5	<5
BROMOMETHANE	μg/l	<10	<10	<10	<10
CARBON TETRACHLORIDE	µg/l	<5	<5	< 5	< 5
CHLOROBENZENE	µg/l	< 5	<5	<5	< 5
CHLOROETHANE	µg/l	<10	<10	<10	<10
2-CHLOROETHYLVINYL ETHER	µg/l	<10	<10	<10	<10
CHLOROFORM	µg/l	< 5	< 5	<5	<5
CHLOROMETHANE	µg/l	<10	<10	<10	<10
DIBROMOCHLOROMETHANE	µg/l	<5	<5	<5	< 5
1,2-DICHLOROBENZENE	µg/l	< 5	< 5	<5	<5
1,3-DICHLOROBENZENE	µg/l	<5	< 5	< 5	<5
1,4-DICHLOROBENZENE	μg/l	37	\ \S	<5	< 5
1,1-DICHLOROETHANE	μg/l		/33/	<5	< 5
1,2-DICHLOROETHANE	µg/l	₹5	<5	<5	< 5
1,1-DICHLOROETHENE	µg/l	< 5	< 5	< 5	<5
1,2-DICHLOROETHENE	µg/l	<5	< 5	<5	< 5
1,2-DICHLOROPROPANE	µg/1	<5	<5	< 5	<5
cis-1,3-DICHLOROPROPANE	μg/l	< 5	<5	<5	<5
trans-1,3-DICHLOROPROPANE	μg/l	<5	< 5	<5	< 5
ETHYLBENZENE	µg/l	< 5	< 5	<5	< 5
METHYLENE CHLORIDE	µg/l	<10	<10	<10	<10
1,1,2,2-TETRACHLOROETHANE	μg/l	< 5	< 5	< 5	₹5
TETRACHLOROETHENE	µg/l	< 5	₹5	< 5	₹\bar{\cdot\sigma}
TOLUENE	μg/l	< 5	<5	<5	4(J)
1,1,1-TRICHLOROETHANE	µg/l	< 5	< 5	< 5	_,₹5
1,1,2-TRICHLOROETHANE	µg/1	< 5	<5	<5	< 5
TRICHLOROETHENE	µg/1	< 5	<5	<5	<5
TRICHLOROFLOUROMETHANE	µg/1	<5	<5	₹5	< 5
VINYL CHLORIDE	μg/l	<10	<10	<10	<10
TOTAL VOCs	μg/l	37	33	0	4

APPENDIX II Risk Calculations North End Site

		

Intake Calculations

Ingestion of Drinking Water:

Intake = ((IR)(EF)(ED))/((BW)(AT))

	(Noncarcinogenic Effects) (Carcinogenic Effects)
Child 1 L/day 365 days/year 6 years 15 kg	2190 days 25550 days
Adult 2 L/day 365 days/year 30 years 70 kg	10950 days 25550 days
Variable Values Ingestion Rate (IR) Exposure Frequency (EF) Exposure Duration (ED) Body Weight (BW)	Averaging 11me (A1)

Inhalation of Volatized Chemicals:

Intake= ((IR)(ET)(EF)(ED))/((BW)(AT))

Child 0.83 m3/hr 0.25 hr/ day 365 days/year 6 years 15 kg 2190 days 25550 days
Adult 0.83 m3/hr 0.25 hr/ day 365 days/year 30 years 70 kg 10950 days
Variable Values Ingestion Rate (IR) Exposure Time (ET) Exposure Frequency (EF) Exposure Duration (ED) Body Weight (BW) Averaging Time (AT)

Final Intake = (Intake)(Chemical Concentration)

Hazard Index = (Final Intake)/(Reference Dose)

Cancer Risk = (Final Intake)(Slope Factor)

FINAL INTAKE CALCULATIONS -Adult, Noncancer

0.003973412	ndex	Pathway Hazard Index			
ND		3.31429E-06	0.028571429	0.000116	Vinyl Chloride
0.000271	0.006	1.62571E-06	0.028571429	0.0000569	Trichloroethene
0.000183492	0.09	1.65143E-05	0.028571429	0.000578	1,1,1 Trichloroethane
0.000244286	0.01	2.44286E-06	0.028571429	0.0000855	Tetrachloroethene
0.000165714	0.01	1.65714E-06	0.028571429	0.000058	1,2 Dichloroethene
0.002666667	0.009	0.000024	0.028571429	0.00084	1,1 Dichloroethene
ND		1.37429E-06	0.028571429	0.0000481	1,2 Dichloroethane
0.000425714	0.1	4.25714E-05	0.028571429	0.00149	1,1 Dichloroethane
1.65397E-05	0.09	1.48857E-06	0.028571429	0.0000521	1,2 Dichlorobenzene
ND		2.77714E-06	0.028571429	0.0000972	Chloromethane
ND		1.11429E-05	0.028571429	0.00039	Chloroethane
Hazard Index	RſD	Final Intake	Intake	Concentration	Chemical
			ater	taminated drinking w	Pathway: Ingestion of contaminated drinking water

0.000053843	Index	Pathway Hazard Index			
ND		3.43857E-07	0.002964286	0.000116	Vinyl Chloride
ND		1.68668E-07	0.002964286	0.0000569	Trichloroethene
5.70E-06	0.3	1.71336E-06	0.002964286	0.000578	1,1,1 Trichloroethane
UN		2.53446E-07	0.002964286	0.0000855	Tetrachloroethene
ND		1.71929E-07	0.002964286	0.000058	1,2 Dichloroethene
QN.		0.00000249	0.002964286	0.00084	1,1 Dichloroethene
ND		1.42582E-07	0.002964286	0.0000481	1,2 Dichloroethane
4.41679E-05	0.1	4.41679E-06	0.002964286	0.00149	1,1 Dichloroethane
3.86E-06	0.04	1.54439E-07	0.002964286	0.0000521	1,2 Dichlorobenzene
ND		2.88129E-07	0.002964286	0.0000972	Chloromethane
1.16E-07	10	1.15607E-06	0.002964286	0.00039	Chloroethane
Hazard Index	RfC	Final Intake	Intake	Concentration	Chemical
				ntaminated air	Pathway: Inhalation of contaminated air

	-		

FINAL INTAKE CALCULATIONS -Child, Noncancer

0.000307991	Index	Pathway Hazard Index			
ND		2.34937E-07	0.002025316	0.000116	Vinyl Chloride
0.0000192	0.006	1.15241E-07	0.002025316	0.0000569	Trichloroethene
1.30E-06	0.09	1.17063E-06	0.002025316	0.000578	1,1,1 Trichloroethane
1.73165E-06	0.1	1.73165E-07	0.002025316	0.0000855	Tetrachloroethene
1.17468E-06	0.1	1.17468E-07	0.002025316	0.000058	1,2 Dichloroethene
0.00018903	0.009	1.70127E-06	0.002025316	0.00084	1,1 Dichloroethene
ND		2.96312E-06	0.061603376	0.0000481	1,2 Dichloroethane
9.1789E-05	—	9.1789E-05	0.061603376	0.00149	1,1 Dichloroethane
3.56615E-06	0.9	3.20954E-06	0.061603376	0.0000521	1,2 Dichlorobenzene
ND		5.98785E-06	0.061603376	0.0000972	Chloromethane
ND		2.40253E-05	0.061603376	0.00039	Chloroethane
Hazard Index	RſD	Final Intake	Intake	Concentration	Chemical
			ater	ntaminated drinking w	Pathway: Ingestion of contaminated drinking water

0.000023619	ıdex	Pathway Hazard Index			
ND		1.48279E-06	0.0127827	0.000116	Vinyl Chloride
ND		7.27336E-07	0.0127827	0.0000569	Trichloroethene
2.46E-06	ယ	7.3884E-06	0.0127827	0.000578	1,1,1 Trichloroethane
ND		1.09292E-06	0.0127827	0.0000855	Tetrachloroethene
ND		7.41397E-07	0.0127827	0.000058	1,2 Dichloroethene
ND		1.07375E-05	0.0127827	0.00084	1,1 Dichloroethene
ND		6.14848E-07	0.0127827	0.0000481	1,2 Dichloroethane
1.90E-05	1	1.90462E-05	0.0127827	0.00149	1,1 Dichloroethane
1.66E-06	0.4	6.65979E-07	0.0127827	0.0000521	1,2 Dichlorobenzene
ND		1.24248E-06	0.0127827	0.0000972	Chloromethane
4.99E-07	10	4.98525E-06	0.0127827	0.00039	Chloroethane
Hazard Index	RfC	Final Intake	Intake	Concentration	Chemical
				ntaminated air	Pathway: Inhalation of contaminated air

 _		

FINAL INTAKE CALCULATIONS - Adult, Cancer

FINAL INTAKE CALCULATIONS - Child, Cancer

1.24E-06		Pathway Cancer Risk			,
3.90E-08	0.29	1.37543E-07	0.001185714	0.000116	Vinyl Chloride
1.00E-09	0.017	6.74671E-08	0.001185714	0.0000569	Trichloroethene
ND		6.85343E-07	0.001185714	0.000578	1,1,1 Trichloroethane
ND		1.01379E-07	0.001185714	0.0000855	Tetrachloroethene
ND		6.87714E-08	0.001185714	0.000058	1,2 Dichloroethene
1.20E-06	1.2	0.000000996	0.001185714	0.00084	1,1 Dichloroethene
5.18999E-09	0.091	5.70329E-08	0.001185714	0.0000481	1,2 Dichloroethane
ND		1.76671E-06	0.001185714	0.00149	1,1 Dichloroethane
ND		6.17757E-08	0.001185714	0.0000521	1,2 Dichlorobenzene
6.92E-10	0.006	1.15251E-07	0.001185714	0.0000972	Chloromethane
ND		4.62429E-07	0.001185714	0.00039	Chloroethane
Cancer Risk	Slope Factor	Final Intake	Intake	Concentration	Chemical
				ntaminated air	Pathway: Inhalation of contaminated air
4.18E-06	Risk	Pathway Cancer Risk			
1.25943E-06	1.9	6.62857E-07	0.005714286	0.000116	Vinyl Chloride
3.57657E-09	0.011	3.25143E-07	0.005714286	0.0000569	Trichloroethene
ND		3.30286E-06	0.005714286	0.000578	1,1,1 Trichloroethane
ND		4.88571E-07	0.005714286	0.0000855	Tetrachloroethene
ND		3.31429E-07	0.005714286	0.000058	1,2 Dichloroethene
0.00000288	0.6	0.0000048	0.005714286	0.00084	1,1 Dichloroethene
2.5012E-08	0.091	2.74857E-07	0.005714286	0.0000481	1,2 Dichloroethane
ND		8.51429E-06	0.005714286	0.00149	1,1 Dichloroethane
N		2.97714E-07	0.005714286	0.0000521	1,2 Dichlorobenzene
7.22057E-09	0.013	5.55429E-07	0.005714286	0.0000972	Chloromethane
Y		2.22857E-06	0.005714286	0.00039	Chloroethane
Cancer Risk	Slope Factor	Final Intake	Intake	Concentration	Chemical
			ater	taminated drinking w	Pathway: Ingestion of contaminated drinking water